Acute Glucagon Induces Postprandial Peripheral Insulin Resistance
نویسندگان
چکیده
Glucagon levels are often moderately elevated in diabetes. It is known that glucagon leads to a decrease in hepatic glutathione (GSH) synthesis that in turn is associated with decreased postprandial insulin sensitivity. Given that cAMP pathway controls GSH levels we tested whether insulin sensitivity decreases after intraportal (ipv) administration of a cAMP analog (DBcAMP), and investigated whether glucagon promotes insulin resistance through decreasing hepatic GSH levels.Insulin sensitivity was determined in fed male Sprague-Dawley rats using a modified euglycemic hyperinsulinemic clamp in the postprandial state upon ipv administration of DBcAMP as well as glucagon infusion. Glucagon effects on insulin sensitivity was assessed in the presence or absence of postprandial insulin sensitivity inhibition by administration of L-NMMA. Hepatic GSH and NO content and plasma levels of NO were measured after acute ipv glucagon infusion. Insulin sensitivity was assessed in the fed state and after ipv glucagon infusion in the presence of GSH-E. We founf that DBcAMP and glucagon produce a decrease of insulin sensitivity, in a dose-dependent manner. Glucagon-induced decrease of postprandial insulin sensitivity correlated with decreased hepatic GSH content and was restored by administration of GSH-E. Furthermore, inhibition of postprandial decrease of insulin sensitivity L-NMMA was not overcome by glucagon, but glucagon did not affect hepatic and plasma levels of NO. These results show that glucagon decreases postprandial insulin sensitivity through reducing hepatic GSH levels, an effect that is mimicked by increasing cAMP hepatic levels and requires physiological NO levels. These observations support the hypothesis that glucagon acts via adenylate cyclase to decrease hepatic GSH levels and induce insulin resistance. We suggest that the glucagon-cAMP-GSH axis is a potential therapeutic target to address insulin resistance in pathological conditions.
منابع مشابه
Differential effects of proteins and carbohydrates on postprandial blood pressure-related responses.
Diet composition may affect blood pressure (BP), but the mechanisms are unclear. The aim of the present study was to compare postprandial BP-related responses to the ingestion of pea protein, milk protein and egg-white protein. In addition, postprandial BP-related responses to the ingestion of maltodextrin were compared with those to the ingestion of sucrose and a protein mix. We hypothesised t...
متن کاملThird Exposure to a Reduced Carbohydrate Meal Lowers Evening Postprandial Insulin and GIP Responses and HOMA-IR Estimate of Insulin Resistance
BACKGROUND Postprandial hyperinsulinemia, hyperglycemia, and insulin resistance increase the risk of type 2 diabetes (T2D) and cardiovascular disease mortality. Postprandial hyperinsulinemia and hyperglycemia also occur in metabolically healthy subjects consuming high-carbohydrate diets particularly after evening meals and when carbohydrate loads follow acute exercise. We hypothesized the invol...
متن کاملAntipsychotic-Induced Insulin Resistance and Postprandial Hormonal Dysregulation Independent of Weight Gain or Psychiatric Disease
Atypical antipsychotic (AAP) medications that have revolutionized the treatment of mental illness have become stigmatized by metabolic side effects, including obesity and diabetes. It remains controversial whether the defects are treatment induced or disease related. Although the mechanisms underlying these metabolic defects are not understood, it is assumed that the initiating pathophysiology ...
متن کاملEvidence for an effect of exorphins on plasma insulin and glucagon levels in dogs.
Recently, peptides with opioid-like activity have been demonstrated in peptic digests of dietary protein. The present study was designed to determine the effect of digested and undigested gluten on postprandial insulin and glucagon levels in conscious dogs. The intragastric instillation of digested gluten (25 g) elicited a more rapid and a significantly greater rise in postprandial peripheral v...
متن کاملEndogenous somatostatin-28 modulates postprandial insulin secretion. Immunoneutralization studies in baboons.
Somatostatin-28 (S-28), secreted into the circulation from enterocytes after food, and S-14, released mainly from gastric and pancreatic D cells and enteric neurons, inhibit peripheral cellular functions. We hypothesized that S-28 is a humoral regulator of pancreatic B cell function during nutrient absorption. Consistent with this postulate, we observed in baboons a two to threefold increase in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015